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Introduction Pvalb Subclass Compared to Sst Subclass (GABAergic)

Brain function depends on coordination of multiple types of neurons which emerge from a smaller number of Figure 4: Pvalb vs Sst comparison (cell exon counts) A: Volcano plot of differential expression between the Sst and

progenitor stateg. The nervous system expresses an especially Iar_ge collection of RNA isoforms from a single Pvalb subclasses. High values of avg_log2FC correspond to a higher expression in Pvalb. B: Box Plot of all alternative
gene by alternative .spI|C|.n.g, bl_Jt how this mqlecular program contributes to and regu!ates the emergence Of_ splicing events and their frequencies (n) within the combined Pvalb and Sst exon counts. C: GO plot for Sst differentially
individual neuronal identities via processes like NMD remains poorly understood. This project addressed this by expressed genes; 11 functions selected. D: GO plot for Pvalb differentially expressed genes; 11 functions selected.
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| Cec and nec Ceic and neic Cic and nic DeltaPsi is change in percent spliced in (PSI) values for each potential splice event in a gene.
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_log10(FDR.q.value) gene expression test) and Pvalb/Sst subclasses (GABAergic gene expression test) What is the purpose of this data analyS|S?
g * In context, scRNAseq and snRNAseq are two very expensive sequencing techniques that provide a high resolution [1].
Figure 1: Data Processing Flowchart: A: Violin Plot showing the distribution of the features (genes) and their count « The preferred sequencing technique is batch RNAseq of an entire transcriptome to represent a pool of cells. We utilised
frequency in cells. B: Elbow Plot which shows PC standard deviations C: Feature Plot of the top 2 most differentially new high resolution scRNAseq data to analyse gene ontologies that deliver unique biological functions in different
expressed features in L4/L5(top), Pvalb/Sst (middle) and Cec/Nec Pvalb (bottom). D: PCA plot showing clustering cortical layers and study changes in gene regulation between cortical layers and cellular compartments (particularly
parameters by relationship of cell properties in the data; key for clustering data, often by subclasses E: UMAP plot used to potentially NMD regulated genes: high levels of splicing (deltaPSI]) and high expression (avg_log2FC) in the nucleus).
compare mixing and integration of datasets F: Violin Plot of exon lengths in cell counts compared to nuclei counts. G: Box How did we choose our data?
Plot showing exons distribution in cell against nuclei. H: Gene ontology of nuclei counts. I: Gene Ontology of cell counts. « The choice to use exon counts for this analysis stemmed from the seamless mixing (with little batch variation) between
. . . cell and nuclear exon counts; evident from the UMAP plot, fig1E. The concentration of longer exons in the nucleus (fig1F)
Spllcmg AnaIyS|S of Selected Subclass Laye 'S also made sense biologically as they are retained due to longer exportation time and a longer alternative splicing event.
« Furthermore, when comparing functional gene ontologies between cell and nuclear genes there was a clear difference in
Splicing Analysis: Using the random c® enriched gene functionality; for example mRNA binding was far more enriched in the nucleus, fig1H.
80 cell sample (BASH, linux she")/ « Arandom 80 cell sample which represented 4 cortical layers and both cell/nuclear counts was used for splicing analysis.
What can we gather from differences in L4 and L5 layer cell subclasses (glutamatergic, fig3C and fig3D)?
. ., . « There is evidently no expression of GABAergic genes in glutamatergic neurons. The L5 layer is closer to the basal lamina
Babraham Bionformatics FastQC: Quality control of reads, specifically Faﬁ?&‘:’;’ggi\%ﬁ;ﬁ:dézgl I';iitg :'l:ﬁsi;rﬁ::n':'Sf;:niﬁg';imE(gZ?ziS;:j"9 of the mouse brain. It projects further across the brain than L4, perhaps facilitated by scaffold protein binding enrichment.
removi:isc;ggglrwet;crlgodti;fetﬂs szsﬁpti«;? o(l;:;idqg‘JN iﬁzrntzegom.cmst ofthe |<@— ;.  lementing additional code to split appended reads into forward and « The L4 has a much higher cortical depth and thus a higher excitation density [13]. This is supported by the higher
y P ' reverse components (situational) [6][7]. enrichment of glutamate receptor activity of the L4 layer.
. J \_ J . . . . .
« L4 neuron transmission is heavily regulated by calcium levels. Both layers are strongly connected to the cytoskeleton of
- o . : . n the cortex, facilitated by high expression of genes involved in cytoskeletal protein binding and cell-cell adhesion.
Timbitz QuantificationWhippet Tool: High throughput alternative splicing Creating alternative splicing data specifically for Pvalb (cec vs nec), Pvalb vs , e s : . C . : e g
data for each FastQ in a for loop for each of the 80 cells. Additional code to Sst and L4 vs LS.  Interestingly, L4 has many myosin binding genes which are not present in L5 which is enriched with actin binding genes.
remove extra spaces in csv files incorrectly added by the whippet tool [9]. What can we gather from differences in Pvalb and Sst cell subclasses (GABAergic, figdC and fig4D)?

« Pvalb and Sst subclasses are GABAergic interneurons. This means they are spread throughout the cortical layers (L1 to
R (rtracklayer and GenomicRanges): Exporting + processing whippet output} ‘ Merging the whippet output with the corrosponding differential expression } L6) [12]. They have both GABAergic and glutamatergic activity to act as interneurons (between cells), but GABAergic

in R. dataframe between or within the same subclass set. Graph to show different activity appears to be more enriched in Pvalb whereas glutamatergic activity in Sst (fig4C/D).
splicing event counts and deltaPsi plotted against logfold2change AL ) i i . ) . L i
« Their distribution and anchoring throughout the layers is facilitated by lamin and tubulin binding genes that are required

Figure 2: Splicing Analysis Flow Chart: Various online tools were used with scripts run in Linux shell via the Bash command to produce for their work; anchoring to the cytoskeletal components is also reinforced by PDZ domains.
data on splicing events and their frequencies in different subclasses. « The way Pvalb and Sst interneurons inhibit a signal depends on the location synapse connectivity of the glutamatergic
Resu |ts cells (thus functional differences in their receptor gene ontology to target different parts of the glutamatergic neurons).
What can we gather from differences in Pvalb cell and nuclear counts?
| 4 SUbCIaSS Compared to L5 Subc|ass (G|utamatergi0) - Out of all splicing events, the strongest positive correlation between the splicing percentage (deltaPSl) and positive fold
nuclear expression (avg_log2FC) was represented in cassette exons (CE, fig6B). CE alternative splicing events produce
Figure 3: L4 vs L5 comparison (cell exon counts) A: Volcano Plot of differential expression of genes between the L4 and the highest proportion of NMD transcripts [12]. Exons which have a high splicing percentage and high nuclear retention
L5 subclasses. High values of avg_log2FC correspond to a higher expression in L4. Avg_log2FC is fold change of (high avg_log2FC) are potentially NMD regulated (figSD, top right; e.g Sf3b1 (circled)). Malat1 (figSA, trop right, circled)
expression. It is standardized by log2 as most expression profiles are two-fold changes (not ten-fold in which log10 would be is a non-coding RNA transcript that can be used as a control for nuclear retention.
used). B: Box Plot showing all alternative splicing events and their frequencies (n) C: Gene ontology for L4 differentially  NMD is non-sense mediated decay, instrumental in destroying faulty transcripts and recently found to be effective in
expressed genes against background: 15 selected functions of interest. D: Gene Ontology for L5 differentially expressed regulating gene expression via alternative splicing: AS-NMD modality [11]. NMD disposition is facilitated by the presence
genes against background: 15 selected functions of interest. of a premature stop codon in a transcript which can be random or inserted by alternative splicing (fig6C, Sf3b1: circled).
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. Conclusion & Future Work
N N - This experiment can help conclude that single cell sequencing of cell genomes can be used to identify NMD stable isoforms;
- - . " - = - = - a technique yet to be explored extensively due to the high cost of single cell and single nuclear RNAseq compared to batch
avg_log2FC Type RNAseq. Notably, a correlation was identified between splicing and expression in some exons - strongest in cassette exons
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