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Figure 5: Pvalb nuclear and cellular counts comparison (cell and nuclei exon counts) A: Volcano Plot to show 
differentially expressed genes between Pvalb’s cellular exon counts and nuclear exon counts. High values of avg_log2FC 
correspond to a higher expression in the nucleus of Pvalb cells B: Gene Ontology Plots which show the functional ontology 
of cellular and nuclear differentially expressed genes. C: Bar Graph to show frequencies (n) of alternative splicing events in 
the Pvalb combined nuclear and cellular exon counts dataset. D: Scatter graph of DeltaPsi plotted against avg_log2FC. 
DeltaPsi is change in percent spliced in (PSI) values for each potential splice event in a gene. 
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Regulation and biological functions of alternative 
splicing in neurons of the adult mice visual cortex
Centre for Developmental Neurobiology, King’s College London, New Hunt's House, SE1 1UL London, UK
Jude Popham, Fursham Hamid, Eugene Makeyev

Introduction

Method

Discussion 

Conclusion & Future Work

Brain function depends on coordination of multiple types of neurons which emerge from a smaller number of 
progenitor states. The nervous system expresses an especially large collection of RNA isoforms from a single 
gene by alternative splicing, but how this molecular program contributes to and regulates the emergence of 
individual neuronal identities via processes like NMD remains poorly understood. This project addressed this by 
analysing high throughput single cell RNA seq (scRNA-seq) from the mouse primary visual cortex (VISp) by 
Bakken et al., in 2018 [1]. The expression and splicing profiles of selected neuron subclasses were quantified and 
compared between cortical layers, subclasses and cellular compartments. Raw data included cell exon counts 
(cec), cell intron counts (cic), nuclei exon counts (nec) and nuclei intron counts (nic). We found that the project 
supports the mechanism and presence of NMD containing transcripts in the nuclei of PV interneurons and maps 
the different isoform profiles of GABAergic and glutamatergic layers. 
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This experiment can help conclude that single cell sequencing of cell genomes can be used to identify NMD stable isoforms; 
a technique yet to be explored extensively due to the high cost of single cell and single nuclear RNAseq compared to batch 
RNAseq. Notably, a correlation was identified between splicing and expression in some exons - strongest in cassette exons 
[12]. As the cost of sc/snRNAseq reduces with modern technology, this experiment could be taken further with sequenced 
and labelled embryonic mice brains from Smartseq (Bakken et al. sequenced an adult mouse brain)[1]. This would enable 
the analysis of developmental mouse genes in neurogenesis via comparative bioinformatics techniques, providing a better 
picture of NMD’s role in regulating genes like transcription factors in development of the brain.

Pvalb Subclass (Cell Counts Compared to Nuclear Counts)

Pvalb Subclass Compared to Sst Subclass (GABAergic)

Data Processing + Gene Expression Analysis by Subclass Layer

Splicing Analysis of Selected Subclass Layers

Figure 1: Data Processing Flowchart: A: Violin Plot showing the distribution of the features (genes) and their count 
frequency in cells. B: Elbow Plot which shows PC standard deviations C: Feature Plot of the top 2 most differentially 
expressed features in L4/L5(top), Pvalb/Sst (middle) and Cec/Nec Pvalb (bottom). D: PCA plot showing clustering 
parameters by relationship of cell properties in the data; key for clustering data, often by subclasses E: UMAP plot used to 
compare mixing and integration of datasets F: Violin Plot of exon lengths in cell counts compared to nuclei counts. G: Box 
Plot showing exons distribution in cell against nuclei. H: Gene ontology of nuclei counts. I: Gene Ontology of cell counts.

Results
L4 Subclass Compared to L5 Subclass (Glutamatergic)
Figure 3: L4 vs L5 comparison (cell exon counts) A: Volcano Plot of differential expression of genes between the L4 and 
L5 subclasses. High values of avg_log2FC correspond to a higher expression in L4. Avg_log2FC is fold change of 
expression. It is standardized by log2 as most expression profiles are two-fold changes (not ten-fold in which log10 would be 
used). B: Box Plot showing all alternative splicing events and their frequencies (n) C: Gene ontology for L4 differentially 
expressed genes against background: 15 selected functions of interest. D: Gene Ontology for L5 differentially expressed 
genes against background: 15 selected functions of interest.

Figure 4: Pvalb vs Sst comparison (cell exon counts) A: Volcano plot of differential expression between the Sst and 
Pvalb subclasses. High values of avg_log2FC correspond to a higher expression in Pvalb. B: Box Plot of all alternative 
splicing events and their frequencies (n) within the combined Pvalb and Sst exon counts. C: GO plot for Sst differentially 
expressed genes; 11 functions selected. D: GO plot for Pvalb differentially expressed genes; 11 functions selected. 
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Figure 6: A: Gencode Exon Architecture (left to right) of Sf3b1 gene within the vicinity of coordinate: chr1:55014563-
55014868. A clear example of a cassette exon(CE – circled in red) event between exon 4 and 5 that potentially triggers AS-
NMD via introduction of a premature stop codon. B: Drawn Model of AS-NMD for Sf3b1 gene. Breakages are intervening 
exons not involved in the alternative splicing event. The terminal exon(25) is long due to the 3’ UTR after the actual stop 
codon and thin after the premature stop codon (exon 4A). Stop codons and the splicing event are drawn in blue. 

Figure 2: Splicing Analysis Flow Chart: Various online tools were used with scripts run in Linux shell via the Bash command to produce 
data on splicing events and their frequencies in different subclasses.
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What is the purpose of this data analysis?
• In context, scRNAseq and snRNAseq are two very expensive sequencing techniques that provide a high resolution [1]. 
• The preferred sequencing technique is batch RNAseq of an entire transcriptome to represent a pool of cells. We utilised 

new high resolution scRNAseq data to analyse gene ontologies that deliver unique biological functions in different 
cortical layers and study changes in gene regulation between cortical layers and cellular compartments (particularly 
potentially NMD regulated genes: high levels of splicing (deltaPSI) and high expression (avg_log2FC) in the nucleus).

How did we choose our data?
• The choice to use exon counts for this analysis stemmed from the seamless mixing (with little batch variation) between 

cell and nuclear exon counts; evident from the UMAP plot, fig1E. The concentration of longer exons in the nucleus (fig1F) 
also made sense biologically as they are retained due to longer exportation time and a longer alternative splicing event. 

• Furthermore, when comparing functional gene ontologies between cell and nuclear genes there was a clear difference in 
enriched gene functionality; for example mRNA binding was far more enriched in the nucleus, fig1H. 

• A random 80 cell sample which represented 4 cortical layers and both cell/nuclear counts was used for splicing analysis.
What can we gather from differences in L4 and L5 layer cell subclasses (glutamatergic, fig3C and fig3D)?
• There is evidently no expression of GABAergic genes in glutamatergic neurons. The L5 layer is closer to the basal lamina 

of the mouse brain. It projects further across the brain than L4, perhaps facilitated by scaffold protein binding enrichment.
• The L4 has a much higher cortical depth and thus a higher excitation density [13]. This is supported by the higher 

enrichment of glutamate receptor activity of the L4 layer.
• L4 neuron transmission is heavily regulated by calcium levels. Both layers are strongly connected to the cytoskeleton of 

the cortex, facilitated by high expression of genes involved in cytoskeletal protein binding and cell-cell adhesion.
• Interestingly, L4 has many myosin binding genes which are not present in L5 which is enriched with actin binding genes.
What can we gather from differences in Pvalb and Sst cell subclasses (GABAergic, fig4C and fig4D)?
• Pvalb and Sst subclasses are GABAergic interneurons. This means they are spread throughout the cortical layers (L1 to 

L6) [12]. They have both GABAergic and glutamatergic activity to act as interneurons (between cells), but GABAergic
activity appears to be more enriched in Pvalb whereas glutamatergic activity in Sst (fig4C/D). 

• Their distribution and anchoring throughout the layers is facilitated by lamin and tubulin binding genes that are required 
for their work; anchoring to the cytoskeletal components is also reinforced by PDZ domains.

• The way Pvalb and Sst interneurons inhibit a signal depends on the location synapse connectivity of the glutamatergic 
cells (thus functional differences in their receptor gene ontology to target different parts of the glutamatergic neurons).

What can we gather from differences in Pvalb cell and nuclear counts?
• Out of all splicing events, the strongest positive correlation between the splicing percentage (deltaPSI) and positive fold 

nuclear expression (avg_log2FC) was represented in cassette exons (CE, fig6B). CE alternative splicing events produce 
the highest proportion of NMD transcripts [12]. Exons which have a high splicing percentage and high nuclear retention 
(high avg_log2FC) are potentially NMD regulated (fig5D, top right;  e.g Sf3b1 (circled)). Malat1 (fig5A, trop right, circled) 
is a non-coding RNA transcript that can be used as a control for nuclear retention. 

• NMD is non-sense mediated decay, instrumental in destroying faulty transcripts and recently found to be effective in 
regulating gene expression via alternative splicing: AS-NMD modality [11]. NMD disposition is facilitated by the presence 
of a premature stop codon in a transcript which can be random or inserted by alternative splicing (fig6C, Sf3b1: circled). 
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