K20041606_CW2 Jude Popham, *K20041606* 2022-12-27 ## Section 1: Visualising data with R For these sets of questions we will use the dataset "cell.measurements.csv". This dataset contains measurements depicting cell shape and cell movements at different time points. The aim of the study is to understand if addition of treatment alter cell shape or movement in the context of injury. So there are: - 11 measurement - 6 animals: 3 treated and 3 not treated (control) - several time points (time frame) For each animal and each time point, measurements have been collected with and without Injury. Second and third column contain info about injury (1 presence of injury; 0 absence of Injury) and treatment (1 presence of treatment; 0 absence of treatment). ``` #Load the libraries library(tidyverse) ``` ``` ## -- Attaching packages -- ----- tidyverse 1.3.2 -- ## v ggplot2 3.4.0 v purrr 1.0.0 ## v tibble 3.1.8 v dplyr 1.0.10 ## v tidyr 1.2.1 v stringr 1.5.0 ## v readr 2.1.3 v forcats 0.5.2 ## -- Conflicts ----- ## x dplyr::filter() masks stats::filter() ## x dplyr::lag() masks stats::lag() library(dplyr) library(hexbin) library(ggplot2) ``` ## Exercise V1 #### Question: Visualise the distribution of each measurement within each animal, showing behavior in presence or absence of Injury. Discuss which measurement has the most variability between animals, in presence and absence of Injury. Can you see any apparent different between treated animals vs the control ones? #### Code: To create two distribution plots, one for healty and one for injured animals. Within each plot, there are 11 different box plots, showing distribution of all 11 measurements. These box plots detail the 6 animal types across the x axis ('Animal') and their corrosponding distribution of the measurement on the y axis ('value'). ``` #Load the dataframe cell.measurements <-read.csv('/Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data/RNAseq/cel #Subset dataframe into prescence of injury cell.measurements.injured <- subset(cell.measurements, Injury == '1') %>% #I subset the dataframe usin select(-c(Injury, Treatment, time_frame)) #select - is the inverse. I used this to remove #all of the columns that are within the brackets of the select function as we only #want the cell measurements, not the predictor variables. cell.measurements.healthy <- subset(cell.measurements, Injury == '0') %>% #I subset the dataframe using select(-c(Injury, Treatment, time_frame)) #select - is the inverse. I used this to remove #all of the columns that are within the brackets of the select function as we only #want the cell measurements, not the predictor variables. #Visualising the distribution of healthy cell measurements #We do not need a log_10 scale because everything is comparably measured in size cell.measurements.injured.distribution <- cell.measurements.injured %>% pivot_longer(-Animal) %>% mutate(Animal = factor(Animal)) %>% ggplot(aes(Animal, value)) + #inputing the aes into ggplot function geom_jitter(alpha = 0.3, color = 'tomato') + #alpha 0.3 changes the size of the #noise added to the polot by geom gitter and the color specifies them as red geom_boxplot(aes(color = Animal)) + #this specifices the ggplot function #as a boxplot and splits the animals by colour ggtitle('Injured_Distribution') + #adding a title for the graph theme(axis.text.x=element_blank()) + #adding a theme for the graph facet_wrap(~name) #facet wrapping the graph by the name cell.measurements.healthy.distribution <- cell.measurements.healthy %>% pivot_longer(-Animal) %>% mutate(Animal = factor(Animal)) %>% ggplot(aes(Animal, value)) + geom_jitter(alpha = 0.3, color = 'tomato') + geom_boxplot(aes(color = Animal)) + ggtitle('Control_Distribution') + theme(axis.text.x=element_blank()) + facet_wrap(~name) ``` ## Plot: Graphs showing distribution of each measurement within each animal for abscence ('Control_Distribution') and prescence ('Injured_Distribution') of injury: ## cell.measurements.healthy.distribution cell.measurements.injured.distribution ## Discussion: Which measurement has the most variability between animals in presence and absence of injury? Can you see any apparent different between treated animals vs the control ones? In the prescence of injury (injured distribution), the measurement with the most variability is Displacement_delta_z_um_mean. This is because taller box plots imply more variable data: the medians are similar but there are very wide ranges (whisker length) which implies great variability. In the abscence of injury (control distribution), the measurement with the most variability is less obvious and is either Displacement_delta_z_um_mean or Velocity_Angle_Z_mean. They both have great variability in measurement with very wide ranges while the medians of each animal remain similar. When comparing control and injury box plots, there tends to be an overall slight decrease in medians of the measurements and variability (box plot whisker length) appears to increase slightly. This means the injured animals tend to have more variability in measurement and slightly lower values in general. ## Exercise V2 #### Question: For each measurement, plot how the values change over time, discriminating between each animal and facetting based on the presence or absence of Injury. Discuss the final plot. Can you see similar behaviors across animals? Does time have a big effect on all or some of the measurements? #### Code 1: To create 11 individual graphs with color to visualise the data clearly ``` #Code to create individual graphs Acceleration_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group by (Animal, time frame) %>% ggplot(mapping = aes(x = time frame, y = Acceleration mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Velocity_Angle_X_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Velocity_Angle_X_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme minimal() Velocity_Angle_Y_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group by (Animal, time frame) %>% ggplot(mapping = aes(x = time_frame, y = Velocity_Angle_Y_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Velocity_Angle_Z_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Velocity_Angle_Z_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme minimal() Area_ums2_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Area_ums2_mean, color = Animal)) + geom line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Displacement_delta_z_um_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Displacement_delta_z_um_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Ellipticity_Oblate_mean_time_plot <- cell.measurements %>% ``` ``` mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Ellipticity_Oblate_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Ellipticity Prolate mean time plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group by (Animal, time frame) %>% ggplot(mapping = aes(x = time_frame, y = Ellipticity_Prolate_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Track_Speed_ums_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Track_Speed_ums_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Sphericity_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Sphericity_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() Volume_um3_mean_time_plot <- cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(mapping = aes(x = time_frame, y = Volume_um3_mean, color = Animal)) + geom_line() + facet_wrap(facets = vars(Injury)) + theme_minimal() ``` #### Plot 1: 11 individual graphs ``` Acceleration_mean_time_plot ``` Velocity_Angle_X_mean_time_plot Velocity_Angle_Y_mean_time_plot Velocity_Angle_Z_mean_time_plot Area_ums2_mean_time_plot Displacement_delta_z_um_mean_time_plot Ellipticity_Oblate_mean_time_plot Ellipticity_Prolate_mean_time_plot Track_Speed_ums_mean_time_plot Sphericity_mean_time_plot Volume_um3_mean_time_plot ## Code 2: Running an lapply loop to create a wrap plot. This wrap plot contains 11 different graphs corrosponding to the 11 different graph. Each graph is faceted into two: one for prescence injury (injury) and one for abscence of injury (abscence). These 11 graphs are line graphs which detail the change in measurement values (y axis) over the time frame (x axis). There are 6 lines on each graph, each corresponding to one of the 6 animal measurements (3 control and 3 treated). This big plot provides a better comparison for visual context. ``` #library library(patchwork) #Saving measurement column names as a string colNames <- names(cell.measurements)[5:15] #Visualising all the data in black and white #Code to run
this graphing across all of the columns Value_Time_Plots <- do.call(wrap_plots, lapply(colNames, function(x){ # plotting code cell.measurements %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence')) %>% group_by(Animal,time_frame) %>% ggplot(aes_string(x="time_frame", y = x, color = 'Animal')) + geom_line() + theme(axis.text = element_text(size = 0.1)) + facet_wrap(facets = vars(Injury)) + ``` # theme_minimal() })) Plot 2: Large plot detailing all measurements faceted into abscence and prescence of injury ## Discussion: Can you see similar behaviours across animals? The behaviours across animals largely depend on the measurement. For Does time have a big effect on all or some of the measurements? Time does not have a big effect on all of the measurements. It has a big effect on acceleration_mean as the values tend downwards over time. It does not have much effect on velocity_angle_x_mean which have no correlation with time. You can see similar behaviours... Time has a great affect on some and all of the measurements.. ## Exercise V3 ### Question: What are the most correlated measurements in the dataset? Create a correlation plot and discuss what are the most positive correlated and negative correlated variables. ## Code 1 and Plot 1: To create a corrplot detailing all 11 measurements on the x and y axis and there correlation within a grid where measurement axis meet. There is a colour code on the right of the plot, detailing the extent of positive or negative correlation. A maximum value of correlation is 1 and a minimum value of correlation is -1. Where the same measurements meet in the grid, correlation is of course a maximum value of 1. ``` #Install necessary libraries for statistical analysis library(corrplot) ``` ## ## corrplot 0.92 loaded ## Code 2 and Plot 2 Ranking the top differentially expressed genes using a GITHUB package: lares ## Returning only the top 10. You may override with the 'top' argument ## Ranked Cross-Correlations 10 most relevant #### Discussion: What are the most correlated measurements in the dataset? What are the most positive correlated and negatively correlated variables? The correlation between same measurements is a good control to check that the correlation worked as same measurements will always have a maximum correlation of 1. We can gather that the most correlated cell measurements in the dataset are the ones with the highest values: the highest negative values and the highest positive values. The top 10 most correlated measurements are shown in the 'Ranked Cross Correlations' graph. This displays the positive correlated measurements in blue and the most negative correlated measurements in red, just as in the corrplot. All correlations have a p-value less than 0.05. The most positively correlated variables are between Area_ums2_mean and Volume_um3_mean, Acceleration_mean and Track_Speed_ums_mean, Ellipticity_Prolate_mean and Sphericity_mean and finally Track_Speed_ums_mean and Sphericity_mean in descending positive correlation. These all have high values of positive correlation ranging from 0.97 down to 0.37. The most negatively correlated variables are between Area_ums2_mean and Track_Speed_ums_mean, Track_Speed_ums_mean and Volume_um3_mean, Acceleration_mean and Area_ums2_mean, and finally Velocity_Angle_Z_mean and Displacement_delta_z_um_mean in descending negative correlation. These have high values of negative correlation ranging from -0.71 to -0.58. Overall there are more negatively correlated variables in th top 10 most correlated variables than positive correlated variables. This suggests that the values are mainly negatively correlated. Interestingly, the range in the top 4 most positive correlated means (from 0.97 to 0.37) is far greater than the range in the 4 most negatively correlated means (-0.71 to -0.58). This further supports the assumption that the measurements are more negatively correlated than positively correlated on average. # Section 2: Stats with R ## Exercise SR1 ## Question: Consider the Velocity_Angle_X_mean measurement.Is there a statistical significant difference between Injury and not Injury in control animals? Is there a statistical significant difference between Injury and not Injury in treated animals? Explain which test you used and why it is the appropriate one. Discuss and visualise the results - Normality: The data have to be normally distributed (normal shape, bell shape, Gaussian shape). - Homogeneity in variance: The variance should not change systematically throughout the data. - Interval data: The distance between points of the scale should be equal at all parts along the scale - Independence: Data from different subjects are independent so that values corresponding to one subject do not influence the values corresponding to another subject. Basically, it means one measure per subject. For more details, check the presentation of the course. ## Code and 3 graphs (Visualising the data distribution): To subset the dataframe into control and treated, selecting specific columns and mutating columns. ``` #Subsetting the dataframe into Velocity_Angle_X_mean and injury cell.measurements.t_test <- cell.measurements %>% select(Animal, Injury, Velocity_Angle_X_mean) %>% mutate(Injury = ifelse(Injury == "1", "Prescence of Injury", 'Abscence of Injury')) ``` ## #Subsetting into control and treated ``` cell.measurements.t_test.control <- cell.measurements.t_test[cell.measurements.t_test$Animal %in% c('col cell.measurements.t_test.treated <- cell.measurements.t_test[cell.measurements.t_test$Animal %in% c('tr ``` #Using a boxplot as they are the most informative for the first 2 assumptions and they also show you ou To create graphs that visualise the spread of Velocity_Angle_X means between control and treated animals. ## ##Boxplots ``` control_boxplot <- ggplot(cell.measurements.t_test.control, aes(Injury, Velocity_Angle_X_mean))+geom_box</pre> treated_boxplot <- ggplot(cell.measurements.t_test.treated, aes(Injury, Velocity_Angle_X_mean))+geom_box</pre> control_boxplot + treated_boxplot ``` ``` #Using a histogram to visualize distribution ``` ## ##Control ## par(mfrow=c(1,2)) hist(cell.measurements.t_test.control[cell.measurements.t_test.control\$Injury=="Prescence of Injury",]\$ hist(cell.measurements.t_test.control[cell.measurements.t_test.control\$Injury=="Abscence of Injury",]\$V mtext("Control Plot", side = 3, line = -21, outer = TRUE) Velocity_Angle_X_mean ``` ##Treated par(mfrow=c(1,2)) hist(cell.measurements.t_test.treated[cell.measurements.t_test.treated$Injury=="Prescence of Injury",]$ hist(cell.measurements.t_test.treated[cell.measurements.t_test.treated$Injury=="Abscence of Injury",]$V mtext("Treated Plot", side = 3, line = -21, outer = TRUE) ``` Velocity_Angle_X_mean ``` #Visualising the spread of Velocity_Angle_X_mean means between control and injured cell.measurements.t_test.control$round_VAX_mean <- round(cell.measurements.t_test.control$Velocity_Angl t_test.control_dist <- cell.measurements.t_test.control %>% group_by(Injury, round_VAX_mean) %>% count(Injury, round_VAX_mean) t_test.control_dist %>% ggplot(mapping = aes(x = round_VAX_mean, y=n, color = 'tomato')) + geom_line() + facet_wrap(facets = vars(Injury)) ``` ## Code and results (T-Tests): Control T test: ``` #Removing the Animal column cell.measurements.t_test.control <- cell.measurements.t_test.control %>% select(Injury, Velocity_Angle_X_mean) ##T test for control measurements #1) Plotting boxplot ggplot(cell.measurements.t_test.control, aes(x = Injury, y = Velocity_Angle_X_mean)) + geom_boxplot() + ``` ``` #2) Calculating test statistic t.test(Velocity_Angle_X_mean ~ Injury, data = cell.measurements.t_test.control, var.equal = TRUE, paire ## ## Two Sample t-test ## ## data: Velocity_Angle_X_mean by Injury ## t = -0.34856, df = 282, p-value = 0.7277 ## alternative hypothesis: true difference in means between group Abscence of Injury and group Prescenc ## 95 percent confidence interval: -0.1611001 0.1126287 ## sample estimates: mean in group Abscence of Injury mean in group Prescence of Injury 0.029089197 ## 0.004853499 #paired is false because we are running a two sampled t test #we assume variation is equal so var.equal is true #THUS, T value = -0.34856 ``` Treated T test #3) Stating the p value #P value = 0.7277 #4) Conclusions (in discussion below) ``` #Removing the Animal column cell.measurements.t_test.treated <- cell.measurements.t_test.treated %>% select(Injury, Velocity_Angle_X_mean) ##T test for treated measurements #1) Plotting boxplot Velocity_Angle_X_mean Abscence of Injury Prescence of Injury Injury #2) Calculating test statistic t.test(Velocity_Angle_X_mean ~ Injury, data = cell.measurements.t_test.treated, var.equal = TRUE, paire ## ## Two Sample t-test ## ## data: Velocity_Angle_X_mean by Injury ## t = 0.53046, df = 228, p-value = 0.5963 ## alternative hypothesis: true difference in means between group Abscence of Injury and group Prescenc ## 95 percent confidence interval: ## -0.09235362 0.16039631 ## sample estimates: mean in group Abscence of Injury mean in group Prescence of Injury ``` -0.04418947 -0.01016812 ## ``` #paired is false because we are running a two sampled t test #we assume variation is equal so var.equal is true #THUS, T value = -0.53046 #3) Stating the p value #P value = 0.5963 #4) Conclusions (in discussion below) ``` #### Discussion: Deciphering whether there is a statistically significant difference between Injury and not Injury in control animals and treated animals. Why I chose to use a t-test. Our data meets the four key criteria that are required to perform a t-test: the measurement is continuous (Velocity_Angle_X_mean), the sample data have been randomly sampled from a population, there is homogoneity of variance (the variability in each group is similar - this can be seen in the **boxplot** generated above where both injry and control have values with similar ranges within -2 and 2), and finally the distribution is
approximately normal (this can be seen in the **histogram** and **line curve of means** generated above which generates a data that qualitatively follows the pattern of a normal distribution). I chose to use an Two-Sample *t*-test. This is because we have a continuous measurement (Velocity_Angle_X_mean) which is split into two categorical groups: injury and control. The purpose of this test is to decide if the population means of the two different groups (injury and control) are equal or not at a 5% significance level. Discussing Results Null hypothesis: The means of Velocity_Angle_X_mean are the same between injury and control groups Alternative hypothesis: The means of Velocity_Angle_X_mean are unequal between injury and control groups Two sided test: So we can see if difference is above or below. No directionality is implied. Two sample: The animals included in the prescence of injury trials are independent of those in the absence of injury trials ## For the control animals: There is no statistical significant difference between injury and not injury. This is because the p value (0.7277) is well above 0.05 threshold and we thus have to accept the null hypothesis and reject the alternative hypothesis. ## For the treated animals: There is also no statistical significant difference between injury and non injury. This is because the p value (0.5963) is also well above 0.05 threshold and thus we have to accept the null hypothesis and reject the alternative hypothesis. #### Exercise SR2 #### Question: Is there a statistically significant relationship between each cell measurement and the following predictor variables: Injury, Treatment, time? Explain which test you used and why it is the appropriate one. Discuss and present the results. Here we have to use analysis of variance because we are comparing more than 2 groups (means): one-way ANOVA which is an extension of 2 groups comparison of a t-test but with slightly different logic. We are comparing 11 means (each measurement) with 3 predictor variables: Injury, Treatment and time. #### Code: Subsetting the cell measurements dataframe into each predictor variable so there is only one independent variable among the 11 cell measurements. ``` #Predictor variable is the name given to an independent variable used in regression analysis. It provid #Before calculating the correlation coefficient for a pair of variables, must check whether assocation ##This can be done for the whole dataframe at once in a tabular format known as a scatter plot matrix. #A) Subsetting the data into the predictor variables cell.measurements.injury = subset(cell.measurements, select = -c(Animal,Treatment,time_frame)) #subsett cell.measurements.treatment = subset(cell.measurements, select = -c(Animal,Injury,time_frame)) cell.measurements.time_frame = subset(cell.measurements, select = -c(Animal,Treatment,Injury)) cell.measurements.time_frame %>% group_by(time_frame) %>% view() ``` Starting with the a Pearson correlation code and results between the continuous predictor variable (time_frame) and continuous dependent variables (cell measurements) ## Visualising the correlation ``` #B) Time_Frame Scatter # Time frame is a continuous variable. The cell measurements are also continuous variables. This means #we can perform a simple correlation test between one continuous independent variable and multiple #continous dependent variables. # The pearson correlation test is suitable to compute correlation between a continuous dependent variab #and continuous independent (predictor) variables (measurements) ## We can also plot the correlation for a visual representation # Adding a group indicator (three groups 1, 2 & 3) to our example data to simulate colours for differen # Time frame data ranges from 0 to 64 so we will split into 3 groups group <- NA #here we start with the group as NA so we can begin to edit it group[cell.measurements.time_frame$time_frame < 20] <- 1 #We asign the first group to all time frames l group[cell.measurements.time_frame$time_frame >= 20 & cell.measurements.time_frame$time_frame <= 40] <-</pre> group[cell.measurements.time_frame$time_frame > 40] <- 3 #Finally, we assign anything greater than 30 a #Plotting a correlation matrix using the pairs function built into r Cor_time_frame_cell <- pairs(cell.measurements.time_frame[, 1:12], #selecting columns to test as 1:12 lower.panel = NULL, #dropping the lower panel as this is not necessary col = c("red", "cornflowerblue", "purple")[group], # Changing color by group. Concatenate lists pch = c(8, 18, 1)[group], # Changing points by group, once again using main = "Correlation Matrix between Time Frame and Cell Measurements") #adding a title to the grap ``` ## **Correlation Matrix between Time Frame and Cell Measurements** # The top row is the column that displays the correlation between the time frame continuous predictor v # dependent continuous variables of cell measurement Graph: The time frame Pearson statistical significance correlation and p values with the 11 cell mea- #### surements: ``` # C) Time frame statistical test: correlation and p values #Redefine the cell measurements time frame dataframe cell.measurements.time_frame = subset(cell.measurements, select = -c(Animal, Treatment, Injury)) #Calculate the correlation and display p values library(Hmisc) #loading the hmisc library ## Loading required package: lattice ## Loading required package: survival ## Loading required package: Formula ## ## Attaching package: 'Hmisc' ## The following object is masked from 'package:lares': ## ## impute ## The following objects are masked from 'package:dplyr': ## ## src, summarize ## The following objects are masked from 'package:base': ## ## format.pval, units # A simple function to define the format of the correlation matrix where: # cormat : matrix of the correlation coefficients # pmat : matrix of the correlation p-values flattenCorrMatrix <- function(cormat, pmat) {</pre> ut <- upper.tri(cormat)</pre> data.frame(row = rownames(cormat)[row(cormat)[ut]], column = rownames(cormat)[col(cormat)[ut]], cor =(cormat)[ut], p = pmat[ut]) } # Creating the correlation matrix for my dataframe res2<-rcorr(as.matrix(cell.measurements.time_frame[,1:12]))</pre> time_frame_correlation <- flattenCorrMatrix(res2$r, res2$P)</pre> # Removing all rows apart from time frame time_frame_correlation <- time_frame_correlation[time_frame_correlation$row=="time_frame",] ``` Results: ``` time_frame_correlation ``` ``` ## column ## 1 time_frame Acceleration_mean -0.11306647 1.030615e-02 ## 2 time_frame Velocity_Angle_X_mean 0.01538210 7.279094e-01 ## 4 time_frame Velocity_Angle_Y_mean 0.09866601 2.529107e-02 ## 7 time_frame Velocity_Angle_Z_mean -0.02665629 5.465248e-01 ## 11 time frame Area_ums2_mean 0.06358436 1.500076e-01 ## 16 time_frame Displacement_delta_z_um_mean -0.01775224 6.880353e-01 ## 22 time_frame Ellipticity_Oblate_mean -0.01248915 7.775829e-01 ## 29 time_frame Ellipticity_Prolate_mean -0.20527235 2.697838e-06 ## 37 time_frame Track_Speed_ums_mean -0.15011192 6.393382e-04 ## 46 time_frame Sphericity_mean -0.44869289 0.000000e+00 ## 56 time_frame Volume_um3_mean -0.03832002 3.859539e-01 ``` Pearson correlation code and results between the categorical predictor variable (Injury) and continuous dependent variables (cell measurements) ## Visualising the Correlation Code and Graphs: ``` #Refreshing dataframe cell.measurements.injury = subset(cell.measurements, select = -c(Animal, Treatment, time_frame)) #Libraries library(ggplot2) library(patchwork) #Saving the column naves as a variable to put into the lapply function colNames <- names(cell.measurements.injury)[2:12]</pre> # Creating 11 distinct box plots to visualise the categorical correlation between injury #and the 11 cell measurements Cor tests injury <- do.call(wrap plots, lapply(colNames, function(x){ #opening the lapply function # plotting code cell.measurements.injury %>% mutate(Injury = ifelse(Injury == "1", "Injury", 'Abscence Injury')) %>% #Creating binary values for c ggplot(aes_string(x = 'Injury',y = x, color = 'Injury')) + geom_point() + scale_color_manual(values = c("Injury" = "red", "Abscence Injury" = "purple")) #adding unique colours #the previous plots })) #closing the lapply function ``` The injury Pearson statistical significance correlation and p values with the 11 cell measurements: ``` # Injust statistical test: correlation and p values #Redefine the cell measurements injury dataframe cell.measurements.injury = subset(cell.measurements, select = -c(Animal, Treatment, time_frame)) #Calculate the correlation and display p values #loading the hmisc library library(Hmisc) # A simple function to define the format of the correlation matrix where: # cormat : matrix of the correlation coefficients # pmat : matrix of the correlation p-values flattenCorrMatrix <- function(cormat, pmat) {</pre> ut <- upper.tri(cormat)</pre> data.frame(row = rownames(cormat)[row(cormat)[ut]], column = rownames(cormat)[col(cormat)[ut]], cor =(cormat)[ut], p = pmat[ut]) } # Creating the correlation matrix for my dataframe res2<-rcorr(as.matrix(cell.measurements.injury[,1:12])) injury_correlation <- flattenCorrMatrix(res2$r, res2$P)</pre> # Removing all rows apart from injury injury_correlation <- injury_correlation[injury_correlation$row=="Injury",]</pre> ``` #### Results: ## injury_correlation ``` ## row column cor ## 1 Injury Acceleration_mean 0.037383116 3.976832e-01 ## 2 Injury Velocity_Angle_X_mean -0.001690148 9.695083e-01 ## 4 Injury Velocity_Angle_Y_mean 0.076648698 8.255145e-02 ## 7 Injury Velocity_Angle_Z_mean -0.033021607 4.550438e-01 ## 11 Injury Area_ums2_mean 0.033296044 4.513030e-01 ## 16 Injury Displacement_delta_z_um_mean 0.020076782 6.497499e-01 ## 22 Injury Ellipticity_Oblate_mean -0.017480813 6.925604e-01 ## 29 Injury Ellipticity_Prolate_mean -0.347197302 4.440892e-16 ## 37 Injury Track_Speed_ums_mean 0.119912623 6.492436e-03 ## 46 Injury Sphericity_mean -0.110879585 1.188790e-02
56 Injury Volume_um3_mean 0.015273502 7.297551e-01 ``` Pearson correlation code and results the categorical predictor variable (Treatment) and continuous dependent variables (cell measurements) ``` #Redefine the dataframe cell.measurements.treatment = subset(cell.measurements, select = -c(Animal,Injury,time_frame)) #Libraries library(ggplot2) library(patchwork) #Saving the column naves as a variable to put into the lapply function colNames <- names(cell.measurements.treatment)[2:12]</pre> # Creating 11 distinct box plots to visualise the categorical correlation between treatment #and the 11 cell measurements Cor_tests_treatent <- do.call(wrap_plots, lapply(colNames, function(x){ #opening the lapply function # plotting code cell.measurements.treatment %>% mutate(Treatment = ifelse(Treatment == "1", "Treated", 'No Treatment')) %>% #Creating binary values f ggplot(aes_string(x = 'Treatment',y = x, color = 'Treatment')) + geom_point() + scale_color_manual(values = c("Treated" = "red", "No Treatment" = "purple")) #adding unique colours t #the previous plots })) #closing the lapply function ``` The treatment Pearson statistical significance correlation and p values with the 11 cell measurements: ``` # Treatment statistical test: correlation and p values #Redefine the cell measurements injury dataframe cell.measurements.treatment = subset(cell.measurements, select = -c(Animal,Injury,time_frame)) #Calculate the correlation and display p values #loading the hmisc library library(Hmisc) # A simple function to define the format of the correlation matrix where: # cormat : matrix of the correlation coefficients # pmat : matrix of the correlation p-values flattenCorrMatrix <- function(cormat, pmat) {</pre> ut <- upper.tri(cormat)</pre> data.frame(row = rownames(cormat)[row(cormat)[ut]], column = rownames(cormat)[col(cormat)[ut]], cor =(cormat)[ut], p = pmat[ut]) } # Creating the correlation matrix for my dataframe res2<-rcorr(as.matrix(cell.measurements.treatment[,1:12])) treatment_correlation <- flattenCorrMatrix(res2$r, res2$P)</pre> # Removing all rows apart from treatment ``` treatment_correlation <- treatment_correlation[treatment_correlation\$row=="Treatment",]</pre> #### Results: ## treatment_correlation ``` ## row column cor ## 1 Acceleration_mean -0.084281358 5.619284e-02 Treatment Velocity_Angle_X_mean -0.040492264 3.595810e-01 ## 2 Treatment Velocity Angle Y mean -0.091411463 3.829018e-02 ## 4 Treatment ## 7 Treatment Velocity_Angle_Z_mean 0.001721543 9.689421e-01 ## 11 Treatment Area ums2 mean 0.126081673 4.197264e-03 ## 16 Treatment Displacement_delta_z_um_mean 0.030344106 4.924410e-01 Ellipticity_Oblate_mean -0.112533232 1.067357e-02 ## 22 Treatment ## 29 Treatment Ellipticity_Prolate_mean 0.142906135 1.159307e-03 ## 37 Treatment Track_Speed_ums_mean 0.129716526 3.217315e-03 ## 46 Treatment Sphericity_mean 0.313516031 3.468337e-13 ## 56 Treatment Volume_um3_mean 0.209536692 1.649130e-06 ``` #### Discussion Explain which test you used and why its the appropriate one. What do results tell us? Why I used Pearson test The default method of the core/core.test function in R is Pearson I used a Pearson Correlation test. This is because pearson tests are suitable for correlation tests between two continuous variables and also include a special 'point-biserial correlation' case for categorical (dichotomous variables) with continuous variables. This means I can use this test for injury, treatment and time_frame which are categorical, categorical and continuous predictor variables, respectively. The reason that Pearson can do this is bdue to the 'point-biserial correlation'. This kind of statistical test can be used when you want to measure the relationship between a continuous variable and a dichotomous variable, or one that has two values. ## Data visualisation Before calculating p values and correlation, I visualised the data. The continuous data can be visualised quite simply with a scatter plot. This can be done in a matrix using a function built into R: pairs. However, for the categorical predictor variables (injury and treatment), data has to be visualised differently as there are only two discrete factors. This can be done using a boxplot or point graph. I achieved this for all the 11 measurements for each predictor using ggplot within an lapply for loop. Results ## Exercise SR3 ## Question: What's the difference between parametric and non-parametric data? How would you choose between performing a parametric & nonparametric tests? [max 500 words] #### Answer: The key things to consider when choosing a statistical test is 'what is the main study hypothesis'. Some hypotheses can be confirmatory where they test a pre-supposed relationship and some can be exploratory where they are suggested by the data. Before you calculate a hypothesis test, you must check the assumptions. The fundamental difference between parametric tests and nonparametric is that parametric tests make 4 key assumptions about the parameters of the population distribution of the sample. Parametric tests include a t-test, ANOVA or Pearson correlation. Non-parametric tests usually include Mann-Whitney U tests or Spearman correlations. The first, most important assumption, is that data must fit a certain distribution: parametric tests state that data must be normally distributed. On the other hand, non-parametric tests are 'distribution free': this means they can be used for non-normal variables. It could be argued that non-parametric tests can be used for all cases as a result, as they do not have any requirements; however, parametric are preferred should the data be normal for 3 key reasons. First of all, the estimates of parameters and confidence intervals in a parametric test allow us to say something about the population from which the samples came as well as obtaining a significant test. Secondly, it is hard to do flexible modelling (like allowing for confounding factors using multiple regression) with non-parametric tests. Thirdly, parametric tests have more statistical power: it is more likely to detect significant differences when they truly exist. This means smaller samples can be used to reject a null hypothesis. A second assumption of parametric tests is homogeneity in variance. This means the variance should not change systematically throughout the data: the variance within each population is equal for all populations. If the variances are not homogeneous between populations, they are heteroscedastic. This assumption is key to use the two-sample t-test and ANOVA. A non-parametric equivalent of ANOVA is the Krustal-Wallis test which compares three or more independent groups on a continuous outcome; this violates the assumption of homogeneity of variance between groups in the parametric ANOVA analysis. A third assumption of parametric data is interval data which means that the points of the scale should be equal at all parts along the scale in parametric tests. The fourth assumption of parametric tests is independence of data which means that the values corresponding to one subject do not influence the values corresponding to another subject: there is one measure per subject. In conclusion, parametric tests should always be used when the above assumptions are met due to their greater statistical power. Nonparametric tests are only used when the scale level is not metric, the true distribution of the random variables isn't known or the sample is too small to assume a normal distribution. Non parametric tests are thus more robust and can be calculated in many more situations. #### Table: Most common parametric and non-parametric tests for different sample sizes: for a parametric test there is always a non-parametric counterpart. | Sample Size | Parametric Tests | Nonparametric tests | | |-----------------------------------|-------------------------|------------------------------|--| | One sample | Simple t-Test | Wilcoxon test for one sample | | | Two dependent samples | Paired Sample t-Test | Wilcoxon-Test | | | Two independent samples | Unpaired Sample t-Test | Mann-Whitney U Test | | | More than two independent samples | One factorial ANOVA | Kruskal-Wallis-Test | | | More than two dependent samples | Repeated Measures ANOVA | Friedman-Test | | | Correlation between two variables | Pearson Correlation | Spearman-Korrelation | | # Section 3: RNAseq Excercises #### Exercise RSQ1 #### Question: Write a short assay on RNA-seq analysis, based on the following questions: How does RNA-seq works? What are the key steps of a RNA-seq pipeline starting from the raw data? What are the challenges of RNA-seq? #### Answer: The RNA-seq pipeline being with sequencing, followed by data analysis and finally functional and differential expression analysis. The TruSeq Stranded mRNA RNA Kit (figure 1) is the chosen RNAseq workflow to analyse the gene expression profiling of raw biological samples through high throughput sequencing technology. This is because relative abundance of mRNA is enriched in the sample to increase the accuracy of gene expression measurements. This is done by polyA enrichment methods to isolate mRNA molecules. After enrichment, adjusted RNA is cleaned, fragmented and primed in a single step. This is followed by the synthesis of the first cDNA strand and the addition of an actinomycin compound which prevents simultaneous second strand synthesis. The RNA template is degraded, ensuring only the second cDNA strand will be produced in the next synthesis step. The second cDNA strand synthesis uses dUTP nucleotides to differentiate between the two strands of DNA after synthesis. The resulting double stranded DNA is prepared for adapter ligation via adenylation of the 3' end (this allows hybridisation of cDNA with thymine on the 3' end of the adaptors). After adenylation, adaptors are ligated onto 3' ends of cDNA and they enzymatically remove dUTPs. Lacking dUTPs, the fragments are enriched via PCR amplification and the resulting
library is validated prior to sequencing: this is done quantitatively with qPCR and qualitatively with a bioanalyser to verify if there is enough good quality DNA. The raw sequencing data output can be in a .bcl format which is sorted to separate reads and converted to fastq files via demultiplexing. It can be paired-end data (PET) or single end data (SET). The RNA-seq analysis pipeline (figure 1) is applied to these raw data fastq files: read alignment, transcript assembly and gene quantification. Quality assessment is performed pre-alignment with FastQC with Cutadapt and postalignment with Picard Tools. RNAseq reads only map to areas of the genome that code for RNA transcripts (not whole genome sequencing) so reads alignment is performed by special splice-aware mapping aligners like STAR. The two-pass method of STAR aligns each read group separately against a reference genome (created in advance) and merges resulting alignments into one and, including a splice junction detection step to generate the final alignment. Khallisto can also be used for a faster k-mer pseudo-alignment process to a transcriptome reference that may cope better with sequencing errors. STAR can generate an Aligned Genomic BAM; for aliquots with at least one set of paired-end reads an Aligned Transcription BAM and Aligned Chimeric BAM can also be produced. Transcription Fusion data of gene names, junction read count and breakpoint information can be generated using the STAR-fusion pipeline. STAR generates raw count files following alignment excluding reads that are mapped to more than one different gene. These RNA-Seq expression level read counts need to be normalised using count transformations and basic annotations which can be done with FPKM, FPKM-UQ or TPM. It is easier to interpret TPM values than FPKM values as the sum of normalized values will always equal 10⁶ for each library. Differential expression analysis can be done on this data in R or functional gene ontology analysis using online tools such as GOrilla. Overall RNA-seq limitations boil down to its high cost, time intensity and onerous processes mainly due to the large volumes of data generated and input. If a sequencers accuracy is 99% this means 1 base pair is read incorrectly out of 100 which can add up quickly considering the high amount of output. This can be circumvented with higher coverage per genome which can be longer and more costly. If there is more or less DNA than library protocol this can also cause less efficient sequencing reaction runs which develops low quality runs due to read problems (flow cell saturation or reduced coverage). If duplicate fragments are produced, the sequencing reaction will be bias towards them due to overrepresentation. It is difficult to accurately quantify expression levels of rare transcripts due to limited sequencing depth/coverage. There is also a risk of bias in the results depending on the alignment process and normalisation method used. Additionally, there is often a lack of reference genomes or transcriptomes for certain organisms, making it difficult to accurately map the sequence reads. Finally, there can be a lack of knowledge about the biology of the organism being studied, making it difficult to interpret the results. Image RNAseq Workflow ('Read Mapping'. Biocorercg. Github.io, 2022): ## Exercise RSQ2 #### Question: Use the fastq files and perform a quality control of the reads. Discuss and visualise the results. #### Code: Code to download homebrew, wget and then FastQC from babraham bioinformatics. ``` #Downloading homebrew using the curl function in terminal /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" #Configuring homebrew echo '# Set PATH, MANPATH, etc., for Homebrew.' >> /Users/judepops/.zprofile echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> /Users/judepops/.zprofile eval "$(/opt/homebrew/bin/brew shellenv)" #Downloading wget brew install wget #Downloading fastqc using the link from babraham bioinformatics wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip #Creating a fastqc shortcut to call (without specifying entire path) ## Navigating to the expanded folder containing the fastqc cd Downloads/FastQC/ # giving permissions chmod +x fastqc` ## Navigating to fastqc via absolute path and putting it into the bin sudo ln -s /Users/judepops/Downloads/FastQC/fastqc /usr/local/bin/fastqc ## Allowing fastqc to run on the mac in terminal without shell denying access. This is done via the sud sudo su chmod 777 /Users/judepops/Downloads/FastQC/fastqc ``` Creating a script to run the fastqc ``` #Moving to the script location #Makign a script and setting its output to a new data subdirectory made inside the CW_2_Data directory cd Documents/Bioinformatics_Module/CW_2/CW_2_Data/script/ #Give permissions to the script chmod 755 Fastqc.sh ``` ``` #!/bin/bash #Step 1 Set the working directory to one containing all the data cd /Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data #Step 2 Run the fastqc. The 3 output files will be put inside the directory after -0 fastqc data/SRR3153255.fastq.gz -0 data/ ``` # Running the fastqc script in terminal ``` #Running the script via bash ./Fastqc.sh ``` ``` (base) judepops@Judes-MacBook-Pro script % ./Fastqc.sh Started analysis of SRR3153255.fastq.gz Approx 5% complete for SRR3153255.fastq.gz Approx 10% complete for SRR3153255.fastq.gz Approx 15% complete for SRR3153255.fastq.gz Approx 20% complete for SRR3153255.fastq.gz Approx 25% complete for SRR3153255.fastq.gz Approx 30% complete for SRR3153255.fastq.gz Approx 35% complete for SRR3153255.fastq.gz Approx 40% complete for SRR3153255.fastq.gz Approx 45% complete for SRR3153255.fastq.gz Approx 50% complete for SRR3153255.fastq.gz Approx 55% complete for SRR3153255.fastq.gz Approx 60% complete for SRR3153255.fastq.gz Approx 65% complete for SRR3153255.fastq.gz Approx 70% complete for SRR3153255.fastq.gz Approx 75% complete for SRR3153255.fastq.gz Approx 80% complete for SRR3153255.fastq.gz Approx 85% complete for SRR3153255.fastq.gz Approx 90% complete for SRR3153255.fastq.gz Approx 95% complete for SRR3153255.fastq.gz Analysis complete for SRR3153255.fastq.gz (base) judepops@Judes-MacBook-Pro script % □ ``` ### Code Code to save fastq files into a variable and create a quality score boxplot ``` #Setting working directory #setwd('/Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data/SRR3153255.fastq.gz') #Loading fastq files into a dataframe fastq.files <- list.files(path = '/Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data/data/Stpattern = ".fastq.gz$", full.names = TRUE) fastq.files</pre> ``` ## character(0) ``` #Loading Rsubread for quality control library(Rsubread) #Extracting quality scores qs <- qualityScores(filename='/Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data/data/SRR31</pre> ``` ``` ## ## qualityScores Rsubread 2.12.2 ## ## Scan the input file... ## 1000000 reads have been scanned in 0.8 seconds. ## 2000000 reads have been scanned in 1.7 seconds. ## 3000000 reads have been scanned in 2.5 seconds. 4000000 reads have been scanned in 3.4 seconds. ## ## 5000000 reads have been scanned in 4.3 seconds. ## 6000000 reads have been scanned in 5.1 seconds. ## 7000000 reads have been scanned in 6.0 seconds. 8000000 reads have been scanned in 6.9 seconds. ## 9000000 reads have been scanned in 7.8 seconds. ## 10000000 reads have been scanned in 8.6 seconds. ## ## Totally 10873108 reads were scanned; the sampling interval is 108731. ## Now extract read quality information... ## 1000000 reads have been scanned in 10.2 seconds. ## 2000000 reads have been scanned in 11.0 seconds. ## 3000000 reads have been scanned in 11.9 seconds. 4000000 reads have been scanned in 12.7 seconds. ## ## 5000000 reads have been scanned in 13.5 seconds. ## 6000000 reads have been scanned in 14.4 seconds. 7000000 reads have been scanned in 15.2 seconds. ## ## 8000000 reads have been scanned in 16.0 seconds. ## 9000000 reads have been scanned in 16.8 seconds. ## 10000000 reads have been scanned in 17.7 seconds. ## ## Completed successfully. Quality scores for 100 reads (equally spaced in the file) are returned. ``` #### Plot (RESULTS): A boxplot to show the distribution of quality scores for 100 reads using the boxplot function ``` #Visualising the reads boxplot(qs) ``` RNAseq QC results # Adapter Content # Basic Statistics | Measure | Value | | | |-----------------------------------|-------------------------|--|--| | Filename | SRR3153255.fastq.gz | | | | File type | Conventional base calls | | | | Encoding | Sanger / Illumina 1.9 | | | | Total Sequences | 10873108 | | | | Sequences flagged as poor quality | 0 | | | | Sequence length | 21-100 | | | | %GC | 44 | | | #### Discussion: What the visualised results tell us? The basic statistics tell us some key things. The per base sequence quality tells us if any of the reads have poor quality (FRET scores less than 20) they will need to be trimmed but that is not the case. The reads for most platforms drop towards the ends. Overrepressented sequences can be viewed in adaptor content. There are no poor quality bases and no adapter sequences so trimming is not required for our data. There is also debate over whether trimming improves the mapping of RNAseq reads since alot of aligners also soft-clip sequencing reads which mask portions of reads that do not align to the reference. Thus trimming may not make much of a difference. | 111mming the | data anyway | with Ksnortread | | |--------------|-------------|-----------------|--| | | | | | | | | | | ## Exercise RSQ3 #### Question: Use the count matrix and the related annotation present in the downloaded folder. Perform a differential expression analysis and discuss each step of the analysis along with the results. What are the top 10 differential expressed genes? #### Code: Preparing the provided raw counts data and column data for a DEseq
analysis ``` # DIFFERENTIAL GENE EXPRESSION ANALYSIS #Load libraries library(DESeq2) library(ggplot2) #Load in the counts table counts_data <- read.delim('/Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data/RNAseq/SRP049 #Preparing the counts dataframe but moving gene names in counts_data to row names counts_data=counts_data[counts_data$width>0,] #extracting all rows where width is greater than 0. #This remove duplicate genes as some have no width but still appear in the data frame counts <- as.matrix(counts_data[-1], header = T) #Creating a new counts matrix which is</pre> #the counts dataframe without the first column rownames(counts) <- counts_data$X #moving the gene names (column X) in counts_data #to the rownames of counts #Removing the width column from counts counts <- as.matrix(subset(counts, select = c(-width)))</pre> #Reading in the column data file coldata_file <- read_delim('/Users/judepops/Documents/Bioinformatics_Module/CW_2/CW_2_Data/RNAseq/SRP04 ## Warning: One or more parsing issues, call 'problems()' on your data frame for details, ## e.g.: ## dat <- vroom(...)</pre> problems(dat) coldata <- as.data.frame(coldata_file$group) #creating a dataframe out of the coldata_file's groups rownames(coldata) <- coldata_file $source_name #moving the source name (aka the column names in the counts #the rownnames of the coldata dataframe that was just created colnames(coldata) <- "Condition"</pre> coldata <- coldata %>% mutate(Condition = ifelse(Condition == "lung carcinoma cells_overexpression_EHF CASE", "CASE", 'CTR #merging the columns for CTRL as there is an odd column present which will cause problems later. This i #done using the elsif function that replaces the condition with the first string after the comma and #everything else with the second string after the comma Beginning the DESeq2 analysis ``` ``` # Starting DESeq functions #Creating dds dds <- DESeqDataSetFromMatrix(countData = counts, colData = coldata, design = ~Condition)</pre> ``` ## converting counts to integer mode ``` ## Warning in DESeqDataSet(se, design = design, ignoreRank): 2 duplicate rownames ## were renamed by adding numbers ## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in ## design formula are characters, converting to factors #For each gene, we count the total number of reads for that gene in all samples #and remove those that don't have at least 1 read. dds <- dds[rowSums(DESeq2::counts(dds)) > 1,] #Running deseq on dds dds <- DESeq(dds)</pre> ## estimating size factors ## estimating dispersions ## gene-wise dispersion estimates ## mean-dispersion relationship ## final dispersion estimates ## fitting model and testing #print(dds) #Getting the results DEresults = results(dds, contrast = c("Condition", 'CASE', 'CTRL')) #contrast tells the function what samples to compare. #this is especially useful if there are more than two samples # RESULTS #The log2foldchange is important: if it is negative that means the CASE samples were #downregulated for that gene and if it is positive that means it was upregulated #in the control samples. #The basemean is the average of the normalised counts taken over all the samples #the lfcSE are the standard error estimates for the log2foldchange #the stat #The padv value is more important than the p value because it has to be corrected for #multiple testing. There were alot of genes tested but some of those might be #significant just by chance. It is the corrected p value. This is because #when a statistical test is performed there is a p value of 0.05 which means #5% of the diff expressed genes are due to random chance and the drug has #no real effect on them. Alot of false positive accounted for by padv. ``` #### Results PCA_PLOT Visualising the expression ``` # Looking at a PCA plot of the data #This plot shows the relationship between the expression levels of the genes being compared. The PCA pl vsdata <- vst(dds, blind = FALSE) #running vst and saving it as a new variable PCA_PLOT <- plotPCA(vsdata, intgroup = 'Condition') #saving PCA plot made using vsdata produced by vst</pre> ``` #PCA plot uses VST normalisation techniques to # Looking at the dispersion of the data #This plot shows the dispersion of the data. It is the variability between replicates as a #function of normalised read counts. As the read counts get higher, there is less variations #so there is a decrease in the slope of the fitted slope. plotDispEsts(dds) #The aim is for the red line to trend below one: the lower it is, the better Computing and visualised the top differentially expressed genes in a heatmap ``` # Re-ordering results by adjusted p value DEresults <- DEresults[order(DEresults$padj),]</pre> #Top 10 differenitally expressed genes TOP_10_DGE <- head(DEresults[order(DEresults$padj),], 10)</pre> TOP_10_DGE <- rownames(TOP_10_DGE)</pre> # We are using vst to compute the top 10 differentially expressed genes. This # is because counts are not proportional to expression across genes. The count # numbers for a gene can be related to the length of the transcript, # so it is best to correct for that using a normalisation technique # such as VST or TPM. library(pheatmap) #Creating a file for count visualization by vst normalization vsd <- vst(dds)</pre> # We use the vst function which stands for variance stabilizing transformation. This transformation adj # The vst values are stored in vsd which as a package from DESeq2 mat <- assay(vsd)[head(match(row.names(DEresults), row.names(vsd)), 10),] #We compare the normalised ``` # Exercise RSQ4 #### Question: With BioMart, find the function of the top 10 differential expressed genes, using the Gene Ontology Biological Processes. Dataset: Human genes (GRCh38.p13) | Answer: | |--| | GJB6 | | GJG6 is a human gene known as 'gap junction protein beta 6'. | | MMRN1 | | FCN3 | | FNDC7 | | CXCL14 | | BATF | | SERPINB12 | | SPINK6 | | AGTR2 | | C12ORF74 |