
Coursework_1_6BBG0310_k20041606

Jude Popham, K20041606

2022-11-04

Section 1: UNIX

Question U1

Question: List five types of unix command and describe what each command does, using an example in
each case.

• Answer 1: ‘pwd’
• Explanation: pwd means ‘print working directory’. This is an essential command to find out where

you are located within your files. The file system in a computer is the directory tree and the base of
this tree is the root directory: /. A directory is essentially a folder and the tree consists of folders
wtihin folders.

• Example:

#Putting the directory as the folder which contains this coursework
cd Documents/Bioinformatics_Module/CW_1/Markdown/
#Using pwd to show/check that this is the current working directory
pwd

• Answer 2: ‘cd’
• Explanation: cd means ‘change directory’. This is an essential command to change location/directory

within the directory tree of the computer. You can begin with the root directory, /, and then go up
the ‘directory tree’ and enter folders within folders by stating their names followed by a /.

• Example:

#We start in the folder of our coursework
pwd
#We change directory to the folder of the data which contains this coursework.
#We go back using .. and then enter the Data folder using /Data
cd ../Data/

• Answer 3: ‘nano’
• Explanation: nano is a command that can be used to open a text editor which can be used to create

a text file. For example if we want to create a text file saying ‘hello world’ we would use the code
below:

• Example:

1

#First we change the directory to a place we want the file
cd ../Markdown/
#First we write nano in the terminal
nano
#Then we write the contents of our file in terminal: 'hello world' and
#'good night world' on the next line
#Then we press control x to finish editing
#Then we press Y for yes to save the file in the directory we were in
#when we used nano and write the name of the file, with .txt at the end
#Now we can check the file within the directory it was created using 'cat'
cat hello_world.txt

• Answer 4: ‘mv’
• Explanation: mv is a command that can be used to move files bewteen directories. The basic order

is mv (file name) (new place)
• Example:

#Let's check the directory containing our new 'hello_world' text file we created
#in the previous step
pwd
#Let's now move this file into a different directory (Data) within the directory
#that contains the Markdown directory
mv hello_world.txt ../Data

• Answer 5: ‘sed’
• Explanation: sed is a command which means ‘stream editor’. It is used to replace strings with new

strings and delete lines in text files.
• Example:

###Substituting with sed
##Let's re-open the directory containing the hello_world.txt file
cd ~
cd Documents/Bioinformatics_Module/CW_1/Data
##Let's substitute the word 'night' with 'morning' in the sentence
#'good night world' in line 2
sed 's/night/morning/g' hello_world.txt > hello_world_morning.txt
##Deleting the second line of the file with sed and overwriting the file
#using sed -i.bak
#The i.bak is needed specifically rather than sed -i in macOSX
sed -i.bak '2d' hello_world.txt
#Checking the file has removed the second line so hello_world.txt is now just
#hello world
cat hello_world.txt

Question U2

Question: Within the data directory, the second largest file contains information on genetic variants that
have been identified for a group of human individuals. A collaborator is interested in information about how
the data was generated (contained within the header of the file, lines that start with #), and also wants

2

to see some examples of genetic variant calls. Identify this file from the directory and produce a new file
from this that contains the header and information on the last five genetic variants. Move this file to a new
directory that you call ‘CollaboratorA’.

• The first step is to enter the data directory using the cd command.
• The second step is to identify the second largest file using the ls -S command which will sort all of

the files in order of size.
• The third step would be to extract header information using the # wildcard into a new file and put

this into a new file called Data_Generation.
• The fourth step would be to find the last 5 genetic variants and append this information to the new

file, called Data_Generation.
• The fifth step would be to make a new CollaboratorA directory via mkdir and move this file into it

with the mv command.

Code:

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data
ls -S
grep -E "ˆ.#" ALL.integrated_snvindels_v2a_27022019.GRCh38.phased.vcf > Data_Generation
tail -5 ALL.integrated_snvindels_v2a_27022019.GRCh38.phased.vcf >> Data_Generation
mkdir CollaboratorA
mv Data_Generation CollaboratorA

Output:

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data/CollaboratorA
cat Data_Generation

Question U3

Question: There are three text files labelled “Group.txt” that you wish to share with a collaborator as a
single file, but you will have to remove the date of birth information, as this is personal information and
you do not have 1 permission to share it. Individual 14 has also withdrawn from the study, so you should
not share data for this individual. Create this file, maintaining a single header at the top and including all
permitted individuals across the three groups.

• The first step is to remove headers from all the group.txt files and create individual files
• The second step is to append these individual files to eachother = Groups.txt
• The third step is to remove indidviual 14 using the sed command.
• The fourth step is to remove the dates using the command: cut.
• The fifth step is to remove the dates using the command: sed. We have to substitute (/s) using

sed because using the /d delete the whole line. The dates pattern can be created using a ../../. . . .
representation.

• The sixth step is to remove the DOB string within the header using the command: sed.

Code:

3

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data

for G in Group* .txt
do grep -vwE "DOB" "$G" > $G.txt
done

cat GroupA.txt.txt GroupB.txt.txt GroupC.txt.txt > Groups.txt
head -n 1 GroupA.txt > Groups_Header.txt
cat Groups.txt >> Groups_Header.txt
sed '/ˆ14/d' Groups_Header.txt
sed -i "" "s|../../....||g" Groups_List.txt
sed -i "" "s|DOB||g" Groups_List.txt

Output:

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data
cat Groups_List.txt

Question U4

Question: Within the directory there is a “.sam” file containing information from a sequencing experiment
in SAM format. The first column of a SAM file contains the read name and subsequent columns give
information about where the read aligns to a reference genome. Each sequencing read can align to multiple
different locations and thus have multiple different entries (on different lines) in the SAM file. Count the
total number of lines in the file, and then count the number of unique read names in the file (so if a read
name occurs more than once on different lines, you should only count it once).

• The first step is to count the total number of lines in the file using the wc -l command = 17608.
• The second step is to use the tab delimiter with the cut command to remove columns: this is possible

because a .sam file is a form of .tsv file so it is a tab delimited text file. Fortunately, this is the default
delimiter for the cut command so the command to use is simply: cut -f 1.

• The third step is to remove duplicates and count the number of lines. This can be done with a
combination of the sort and uniq commands. This automatically sorts and removes duplicates when
the two commands are used in a pipe. This gives us an answer of 8804 unique lines.

Code:

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data
#Working out file length
wc -l HG01334.sam
#Extracting the first column ('read names') into a new file
cut -f 1 > HG01334_readnames.txt
#Removing duplicates
sort HG01334_readnames.txt | uniq > HG01334_readnames_unique.txt
#Counting the number of lines again
wc -l HG01334_readnames_unique.txt

Output:

4

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data
wc -l HG01334_readnames_unique.txt

Question U5

Question: A researcher in your group has collected some information about different genes by merging
different datasets, but has made some errors in their code. First, when matching gene names from different
datasets, the wrong information has been collected in some cases so gene names in columns 2 and 3 do not
always match (these lines need to be removed). Second, the word ‘Ortholog’ was mistyped as ‘Ortholag’,
meaning that downstream searches for orthologous genes would not work for all genes. Using command line
arguments, go through the file “genes.information.csv” (columns are separated by commas) and correct these
two errors, creating a new file called “genes.information.corrected.csv” that contains the original header as
the first line.

• The first step is to remove lines where columns 2 and 3 do not match. In this case, we are using a csv
file so all columns are separated by commas as the primary delimiter.

• The second step is to substitute Ortholag for Ortholog. This can be done using the awk -F com-
mand.Awk processes data by scanning patterns and the -F specifies the delimiter as , automatically.
Here we extract columns where column 2 is equal to column 3.

Code:

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data
#Replacing Ortholag with Ortholog
sed -i "Ortholog" "s|Ortholag||g" genes.information.csv
#Identifying and removing lines where columns 2 and 3 do not match and save this
#as a new file.
awk -F, '$2==$3' genes.information2.csv > genes.information.corrected.csv

Output:

cd /Users/judepops/Documents/Bioinformatics_Module/CW_1/Data
#Printing the output file
cat genes.information.corrected.csv

Section 2: R

Question R1:

Question: Define the vector x <- c(5,9,2,3,4,6,7,0,8,12,2,9). For each of the following questions, you should
use just a single line of code in R to calculate the answer: a) What is the sum of the first 4 elements? b)
What is the highest value in the vector? c) Which position in the vector contains the highest value? d)
Which position in the vector would the highest value occur if the vector is reversed in order? e) How many
values in the vector are lower than 10, but higher than 5?

5

• a: 19
• b: 12
• c: Position 10
• d: Position 3
• e: 5

Code:

#Libarires
library(dplyr)

##
Attaching package: ’dplyr’

The following objects are masked from ’package:stats’:
##
filter, lag

The following objects are masked from ’package:base’:
##
intersect, setdiff, setequal, union

#Creating the variable
x <- c(5,9,2,3,4,6,7,0,8,12,2,9)
#a
sum(x[1:4])

[1] 19

#b
max(x)

[1] 12

#c
which.max(x)

[1] 10

#d
rev(x) %>% which.max()

[1] 3

#e
sum(x<10 & x>5)

[1] 5

6

Question R2:

Question: There are 500 rooms in a building. Room 1 contains 1 box, room 2 contains 2 boxes and so on.
Each box contains two items. Calculate how many items there are in total. If there were only 400 rooms in
the building, with two items in each box, how many fewer items would there be in this building compared
to the first?

• Items in total: 250500
• Fewer items in this building compared to the first: 45050

Code:

#Working out the number of boxes for 500 rooms
sum_boxes_500 <- 0
for (i in 1:500) {

sum_boxes_500 <- sum_boxes_500 + i
}
#Working out the number of items for 500 rooms
sum_items_500 = 2*(sum_boxes_500)

#Working out the number in 400 rooms
sum_boxes_400 <- 0
for (i in 1:400) {

sum_boxes_400 <- sum_boxes_400 + i
}

#Working out the number of itens 400
sum_items_400 <- 2*(sum_boxes_400)

#Working out difference in items (how many fewer in building 2)
fewer_items_in_building_2 <- sum_boxes_500 - sum_boxes_400
print(fewer_items_in_building_2)

[1] 45050

Question R3:

Question: For this question, use basic R commands. The file ‘cell_features.csv’ contains information from
different cell lines and experiments that have been run in different fibronectin concentrations. Create a
new data structure containing cell area means from batch A only and then calculate the median value and
interquartile range of these.

• New data structure: cell_features_A
• Answer 1: Median = 3.135937
• Answer 2: IQR = 0.2272149

#Loading dataframe
cell_features <- read.csv('/Users/judepops/Documents/Bioinformatics_Module/CW_1/Data/cell_features.csv')
#Creating dataframe of cell area means from batch A

7

cell_features_A <- cell_features %>%
filter(batch == 'Batch A') %>%
select(cell_area_mean)

#Calculating IQR and median and saving these values in variables
cell_features_A_median <- median(cell_features_A$cell_area_mean)
cell_features_A_IQR <- IQR(cell_features_A$cell_area_mean)

Question R4:

Question: The file ‘humans.csv’ contains information for ten individuals, detailing their sex, whether they
are male, their age and their favourite colour. Load the file into R as an object, view it and correct any
errors you observe using R directly. Calculate the mean age of individuals in the file - if you get any error
messages along the way, try to work out why, and make the necessary changes to the object so that all future
operations using the object will work as intended.

• Corrected Dataframe: humans_data
• Answer: Mean age individuals = 35.9

Code

#Loading the dataframe
humans_data <- read.csv('/Users/judepops/Documents/Bioinformatics_Module/CW_1/Data/humans.csv')
#Correcting the dataframe and saving it as humans_data_corrected
humans_data[which(humans_data$Is_Male == 29), c("Is_Male", "Age")] <- rev(humans_data[which(humans_data$Is_Male == 29), c("Is_Male", "Age")])
#Checking classes of columns
sapply(humans_data, class)

Sample Sex Is_Male Age colour
"integer" "character" "character" "character" "character"

#Converting column Age into an integer from character
humans_data <- transform(humans_data, Age = as.numeric(Age))
#Working out the mean
mean(humans_data$Age)

[1] 35.9

Question R5:

Question: COVID-19 Data for the UK is hosted on the website https://coronavirus.data.gov.uk. Go to
this site, browse the data and instructions and work out how to download the data directly into R (Not via
a spreadsheet -

Hint: Use the “Developer’s Guide” information). Find the date in the last 500 days that had the highest
number of cases. Comparing the latest figures to those 300 days ago, have COVID-19 case numbers gone up
or down?

8

https://coronavirus.data.gov.uk

• Date in last 500 days with highest number of cases: 2022-03-21
• COVID cases up or down compared to 300 days ago?: Down

Code

#Loading the data into R - Pillar 1 and 2 as this is swab testing for the wider population
library(readr)
Coronavirus_Data <- read.csv('https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=newCasesByPublishDate&format=csv')
head(Coronavirus_Data)

areaCode areaName areaType date newCasesByPublishDate
1 K02000001 United Kingdom overview 2022-05-20 6338
2 K02000001 United Kingdom overview 2022-05-19 12208
3 K02000001 United Kingdom overview 2022-05-18 7791
4 K02000001 United Kingdom overview 2022-05-17 8603
5 K02000001 United Kingdom overview 2022-05-16 22337
6 K02000001 United Kingdom overview 2022-05-15 173

#Creating a funciton to subset the dataframe between dates
mydatefunc <- function(x,y){Coronavirus_Data[Coronavirus_Data$date >= x & Coronavirus_Data$date <= y,]}

#Changing the class of the date column in the dataframe to 'Date'
Coronavirus_Data$date <- as.Date(Coronavirus_Data$date)

#Workflow to calculate dates
my_date <- max(Coronavirus_Data$date)
class(my_date)

[1] "Date"

my_date_500 <- my_date - 500
my_date_300 <- my_date - 300

#Subsetting the dataframe for the last 500 days
Coronavirus_Data_500 <- mydatefunc(my_date_500,my_date)

#Calculating the date with the largest cases in the last 500 days
max_case <- max(Coronavirus_Data_500$newCasesByPublishDate, na.rm=T)
max_case_date <- subset(Coronavirus_Data, Coronavirus_Data$newCasesByPublishDate == max_case) %>%

select(date)

#Finding the number of cases 300 days ago against recent
case_recent <- subset(Coronavirus_Data, Coronavirus_Data$date == my_date) %>%

select(newCasesByPublishDate)

case_300 <- subset(Coronavirus_Data, Coronavirus_Data$date == my_date_300) %>%
select(newCasesByPublishDate)

#Comparing Figures
if (case_recent>case_300) {

'Case numbers have gone up'

9

} else {
'Case numbers have gone down'

}

[1] "Case numbers have gone down"

10

	Section 1: UNIX
	Question U1
	Question U2
	Question U3
	Question U4
	Question U5

	Section 2: R
	Question R1:
	Question R2:
	Question R3:
	Question R4:
	Question R5:

